منابع مشابه
Unravelling the folding of bacteriorhodopsin.
The folding mechanism of integral membrane proteins has eluded detailed study, largely as a result of the inherent difficulties in folding these proteins in vitro. The seven-transmembrane helical protein bacteriorhodopsin has, however, allowed major advances to be made, not just on the folding of this particular protein, but also on the factors governing folding of transmembrane alpha-helical p...
متن کاملPacking of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
We propose a coarse-grained (CG) model to study the native structure and physical properties of helical membrane proteins (HMPs) using off-lattice computer simulations. Instead of considering sequence heterogeneity explicitly, we model its effect on the packing of helices by employing a mean packing parameter r(0), which is calculated from an all-atom (AA) model. Specifically, this CG model is ...
متن کاملKinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
A photodiode array in conjunction with a rapid stopped-flow mixing method, with a millisecond time resolution, is used here to study the refolding of the membrane protein bacteriorhodopsin from an apoprotein state with a native-like secondary structure in mixed phospholipid/detergent micelles. Refolding to the native state is initiated by the rapid mixing of all-trans-retinal and the apoprotein...
متن کاملRetinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
The factors driving folding and assembly of integral membrane proteins are largely unknown. In order to determine the role that the retinal chromophore plays in assembly of bacteriorhodopsin, we have determined the kinetics and thermodynamics of retinal binding during regeneration of bacteriorhodopsin, from denatured apoprotein, in vitro. Regeneration is initiated by rapid, stopped-flow, mixing...
متن کاملMechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function.
Molecular interactions and mechanical properties that contribute to the stability and function of proteins are complex and of fundamental importance. In this study, we used single-molecule dynamic force spectroscopy (DFS) to explore the interactions and the unfolding energy landscape of bovine rhodopsin and bacteriorhodopsin. An analysis of the experimental data enabled the extraction of parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochimica et Biophysica Acta (BBA) - Bioenergetics
سال: 2000
ISSN: 0005-2728
DOI: 10.1016/s0005-2728(00)00125-0